scipy.linalg.clarkson_woodruff_transform#
- scipy.linalg.clarkson_woodruff_transform(input_matrix, sketch_size, seed=None)[source]#
Applies a Clarkson-Woodruff Transform/sketch to the input matrix.
Given an input_matrix
Aof size(n, d), compute a matrixA'of size (sketch_size, d) so that\[\|Ax\| \approx \|A'x\|\]with high probability via the Clarkson-Woodruff Transform, otherwise known as the CountSketch matrix.
- Parameters:
- input_matrixarray_like
Input matrix, of shape
(n, d).- sketch_sizeint
Number of rows for the sketch.
- seed{None, int,
numpy.random.Generator,numpy.random.RandomState}, optional If seed is None (or np.random), the
numpy.random.RandomStatesingleton is used. If seed is an int, a newRandomStateinstance is used, seeded with seed. If seed is already aGeneratororRandomStateinstance then that instance is used.
- Returns:
- A’array_like
Sketch of the input matrix
A, of size(sketch_size, d).
Notes
To make the statement
\[\|Ax\| \approx \|A'x\|\]precise, observe the following result which is adapted from the proof of Theorem 14 of [2] via Markov’s Inequality. If we have a sketch size
sketch_size=kwhich is at least\[k \geq \frac{2}{\epsilon^2\delta}\]Then for any fixed vector
x,\[\|Ax\| = (1\pm\epsilon)\|A'x\|\]with probability at least one minus delta.
This implementation takes advantage of sparsity: computing a sketch takes time proportional to
A.nnz. DataAwhich is inscipy.sparse.csc_matrixformat gives the quickest computation time for sparse input.>>> import numpy as np >>> from scipy import linalg >>> from scipy import sparse >>> rng = np.random.default_rng() >>> n_rows, n_columns, density, sketch_n_rows = 15000, 100, 0.01, 200 >>> A = sparse.rand(n_rows, n_columns, density=density, format='csc') >>> B = sparse.rand(n_rows, n_columns, density=density, format='csr') >>> C = sparse.rand(n_rows, n_columns, density=density, format='coo') >>> D = rng.standard_normal((n_rows, n_columns)) >>> SA = linalg.clarkson_woodruff_transform(A, sketch_n_rows) # fastest >>> SB = linalg.clarkson_woodruff_transform(B, sketch_n_rows) # fast >>> SC = linalg.clarkson_woodruff_transform(C, sketch_n_rows) # slower >>> SD = linalg.clarkson_woodruff_transform(D, sketch_n_rows) # slowest
That said, this method does perform well on dense inputs, just slower on a relative scale.
References
[1]Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input sparsity time. In STOC, 2013.
[2]David P. Woodruff. Sketching as a tool for numerical linear algebra. In Foundations and Trends in Theoretical Computer Science, 2014.
Examples
Create a big dense matrix
Afor the example:>>> import numpy as np >>> from scipy import linalg >>> n_rows, n_columns = 15000, 100 >>> rng = np.random.default_rng() >>> A = rng.standard_normal((n_rows, n_columns))
Apply the transform to create a new matrix with 200 rows:
>>> sketch_n_rows = 200 >>> sketch = linalg.clarkson_woodruff_transform(A, sketch_n_rows, seed=rng) >>> sketch.shape (200, 100)
Now with high probability, the true norm is close to the sketched norm in absolute value.
>>> linalg.norm(A) 1224.2812927123198 >>> linalg.norm(sketch) 1226.518328407333
Similarly, applying our sketch preserves the solution to a linear regression of \(\min \|Ax - b\|\).
>>> b = rng.standard_normal(n_rows) >>> x = linalg.lstsq(A, b)[0] >>> Ab = np.hstack((A, b.reshape(-1, 1))) >>> SAb = linalg.clarkson_woodruff_transform(Ab, sketch_n_rows, seed=rng) >>> SA, Sb = SAb[:, :-1], SAb[:, -1] >>> x_sketched = linalg.lstsq(SA, Sb)[0]
As with the matrix norm example,
linalg.norm(A @ x - b)is close tolinalg.norm(A @ x_sketched - b)with high probability.>>> linalg.norm(A @ x - b) 122.83242365433877 >>> linalg.norm(A @ x_sketched - b) 166.58473879945151